
Progress Report

Grant No: N00014-94-1-0462

Office of Naval Research

Self-Checking State Machine Realization in CMOS
Reporting Period : July 1 — December 31, 1994

,L>.Kiwjad!jaBüLLiimL«nga

^ u I K» _
f& ELECTS [r^
%l .EC 3 0 19941 |

F

distribution is uni

;-> x^.-jir.x-ca

Dr. P.K. Lala
Principal Investigator

Dr. A. Walker
Co-Principal Investigator

Department of Electrical Engineering
North Carolina A&T State University

Greensboro, NC 27411.

19941227 027

In this reporting period we have accomplished the following:

L Developed a procedure for totally self-checking (TSC) checker design for m-

out-of-2m codes at the transistor level.

ii. Derived a technique for designing TSC fault-tolerant systems.

i. TSC checker for m-out-of-2m codes.

The w-out-of-27W {ml2m) codes are special cases of /w-out-of-w codes which are

useful for detecting single bit and unidirectional multibit errors in information bits. The

direct mapping of a gate-level TSC checker to its transistor-level equivalent, cannot

guarantee TSC property. This is because not all faults at the transistor-level can be

modeled as stuck-at faults, which are commonly assumed at the gate level. We have

developed an approach for implementing checkers for m/2m codes at the transistor-level

which are TSC with respect to the following faults:

a), single stuck-at faults at input and output signal lines;

b). stuck-on and stuck-open transistor faults;

c). bridges between input signal lines;

d). breaks in input signal lines.

e). bridges in source-drain (SD), gate-source (GS) and gate-drain (GD) of

transistors.

We first propose a TSC checker for 2/4 code, which is designed by replacing the NAND,

NOR gates in a gate-level 2/4 TSC checker with new circuit structures as shown in Fig 1, —-^—

instead of using traditional CMOS implementation of NAND, NOR gates. Fig.2 shows the

transistor-level implementation of TSC checker for 2/4 code.

u

Distrib

-•.-:*iS; ■.,'!:ay Cocas

: DJS-i
Avä;i and/or

Special

Theorem. The checker circuit of Fig.2 is TSC for the faults assumed in the last section.

For the sake of brevity, the proof of the theorem is not included.

The 2/4 checker is used as a building block for constructing checkers for several other

m/2m codes. A general procedure for designing checkers for m/2m codes where m=3,4 5

and 6 is presented .

TSC Checker Design for m-out-of-2m Codes (m=3, 4, 5,6):

The procedure for TSC checker design consists of the following steps:

Step 1:

Case 1. m is odd (m = 3, 5)

i). Partition inputs {xj ... X2m} into two blocks A and B such that block A has m+l input

variables and blockB has m-\ variables, i.e., A={x; ... xm+j), B={xm+2 ... *2/«}

ii). Connect the input variables in block A to a TSC checker for ——out-of-(ffHT) code

and identify its output as (Z]Z2)A; For m = 5, invert the input variables in block B and

connect these to a TSC 2/4 checker, identify its output as (Z]Z2)B For m = 3,

(Z1Z2)B=*5X6

iii). Connect (Z]Z2)A and (zlz2)ß t0 the TSC 2~out-of-4 checker.

Case 2. m is even (m = 4, 6)

i). Partition inputs {xj ... xjm) into two blocks A and B, each block has m input

variables, i.e., A={x; ... xm), B={xm+j ...X2m).

ii). Connect input variables in block A to a —out-of-/w checker, and mark its output as
2

(Z1Z2)A

iii). Connect input variables in block B to a —out-of-m checker, and mark its output as

(Z1Z2>B.

iv). Connect (ZIZ2)A and (zlz2)ßt0 the TSC 2-out-of-4 checker.

Step 2:

i). Partition inputs {xj ... x2w} into two blocks A[and Bj. For m = 4, 6, each block has m

inputs, i.e., Ai={xj ... xm}, BT = {xm+] ... x2m) For m = 3, 5, block AT has m+1

elements and block Bj has w-1 inputs, i.e., A\= {xj ... xm+j}, B\ = {xm+2 ■ ■ ■ *2/w)-

ii). For m = 3, 4, partition block AT into two blocks ai and a2, each having 2 input

variables, i.e., ai= {xi x2} and a2= {x3 x4}. For w = 4, partition block BT into two blocks

b! and b2 such that bj= {x5 x6} and b2= {x7 x8}. Let block An= {a2 Bt) and Bn= ai

for w = 3, and let block ATJ- {a2 b2} and BJJ= {ai b]} for m = 4. Connect blocks AT and

Bi to a checker block I designed by Step 1, identify its output as (Z!Z2)T. Connect blocks

An and BJJ to a checker block II designed by Step 1, identify its output as (zi Z2)JJ.

iii). For m = 5, partition block A[into three blocks ai, a2 and a3 such that ai= {x\ x2},

a2={x3 X4} and a3= {X5 xg}, and partition block Bj into two blocks bi and b2 such that

bi= {x7 xg} and b2={x9 X^Q} For m = 6, partition block A\ into two blocks aj and a2

such that ai= {xi x2 x3} and a2= {X4 X5 xß}, and partition block BT into two blocks b\

and b2 such that t>i= {x7 x8 x9} and b2= {x10 xj j x12}. For m = 5, let block An= {a2 a3

b2}^ BIP (ai bi)' Anr (a3 bi b2)and Bnr (ai a2l-For m = 6'let block An= (a2
b2)3

BIP (al bl)' AIII= (al b2) and BIII= (a2 bl)- Connect blocks Aj and Bj to a
checker block I designed by Step 1, identify its output as (zi z2)i. Connect blocks An and

BJJ to a checker block II designed by Step 1, identify its output as (ZIZ2)JX Connect

blocks Am and Bm to a checker block III designed by Step 1, identify its output as

(zlz2)lII-

iv). For m = 3, 4, connect (zi z2)i and (zi Z2)JJ to a TSC Two-rail checker (TRC) to

produce the checker's final output.

v). For m = 5, 6, connect (zjz^nj. and (z^i^ to a TSC TRC that produces outputs A\

and A2. Connect (ziz2)i and (ZIZ2)JJ to a TSC TRC to produce outputs B\ and B2.

Finally, connect Ai, A2, Bi and B2 to a TSC TRC to produce the final output.

The symbol of the TSC TRC and its input-output pattern are shown in Figure 3. In the

following discussion, n represents the number of Is at the checker's input, np^ is the

number of Is at input block A and «g is the number of Is at input block B and so on.

TSC Checker Design for 3/6 and 4/8 codes

We illustrate the above procedure by designing TSC checkers for 3/6 code (m=3), and

4/8 code (m=4). The checker blocks designed by following step 1 of the general

procedure, are shown in Figure 4(a) and (b) for m = 3, and m = 4 respectively.

The two separate partitions on the input variables generated from step 2 are:

For /w = 3,

i) AT = {xi x2 x3 x4} and BT = {x5 x6};

ii) An = {x3 x4 *5 x6} and BJJ = {x\ x2}.

For m =4,

i). A\ = {x\ *2 X3 X4} and Bj = {X5 xg x-j xg};

ii). An = {X3 x4 X7 xg} and Bn = {xi x2 X5 xg}.

Inputs belonging to a partition are connected to checker blocks as shown in Fig. 5(a) and

5(b) respectively. The outputs of the checker blocks corresponding to partitions I and II

are identified by (ZJZ2)T and (ZIZ2)JJ respectively. These outputs feed a TSC TRC to

produce the final output of the 3/6 and 4/8 checker. As shown in Tables 1 and 2 both of

these checkers satisfy the code-disjoint property.

The TSC checkers for 5/10 code and 6/12 code are designed in a similar manner, and are

shown in Fig. 6 and Fig.7 respectively.

ü. TSC Fault tolerant System Design:

This work has resulted in a paper which has been accepted for conference presentation
and publication in the Proceedings of the Second International Conference on Reliability
and Quality in Design (RQD'95 Proceedings). A copy of the paper is attached.

Vdd Vdd i
H 4

t h GND
JCi

w

H
x^

JCl Vdd

GND GND

W

•*1 -*2 f\ =X\ + X2 fl = X\-Xl

0 0 1 1

0 1 0 1

1 0 0 1

1 1 0 0

Fig. 1. CMOS implementation of NAND, NOR functions

(a). NOR circuit, (b). NAND circuit.

Vdd [

>-¥Hl!^i Hllci H^L Hllsi I kill

X,
7

AGND +
GND

 +GND

«J^

H a2H
.Vdd

tc2 r

Vdd

H HL i
gi—"—«-

Vdd x3

dh
*— W "n n\ is! i4F

OND
"Z.

X4

non-code word

xl x2 x3 X4

output

zlz2

0000 00

0001 00

00 10 00

0100 00

1000 00

Olli
10 11
1 101
1110

1111 1 l

codeword

xl x2 x3 x4

output

h*2

00 1 1 01

0101 1.0

0 110 10

1001 10

1010 10

1 100 01

Fig. 2. TSC checker for 2-out-of-4 code

TSC TRC Symbol:
A1A2B1B2

111L.
TRC
T~Y

TRC AABiB2 ZjZ2

0101 10

codewords 0110 01

100 1 01

1010 10

0000 11

0001 11

0010 11

001 1 11

0 100 11

non-code words Olli 00

1000 00

101 1 11

1 100 00

1101 00

1110 00

1111 00

Figure 3. TSC two-rail checker (TRC)

A B_
x\ x2 x3 *4 x5 x6

1111
2/4

(Z1Z2)A (Z1Z2)B

2/4

z1 z2

(a)

Symbol:

111111
| 6-input blk

n

B

Xi X7 *3 *4 *5 x6 x~i *8

1 1 1 1. ,1111,
2/4 2/4

1 L_ 1..
1

(Z1^2)A
4. +

(Z1Z2)B 2/4 n
zl z2

Symbol:

11111U1
8-input blk

1 1

(b)

Figure 4. (a) 6-input checker block; (b) 8-input checker block

n

Ai Bi An BII

x\ *2 x3 H *5 *g

6-inputblk| | 6-inputblk

(^fpLviC'i^n TRC

*1 z2

Symbol:
xi x2 X3 x4 x5 x6

■tttllt
3/6

TT"
zl z2

(a)

n
Ai Bi An BII

*2 «4 *6 *8

8-input blk
H

8-input blk

(zlz2)l
5AL

TRC
"TT

(zlz2)]

Symbol:

xi X3 '5r^7

UUU1I
4/8

"TT
zl z2

(b)

Figure 5. (a) TSC checker for 3/6; (b) TSC checker for 4/8 code.

Table 1. Code disjoint property of the 3/6 checker.

3/6 checker inputs TRC inputs 3/6 checker outputs

ZjZ2 H "A, "B, "A„ »Bn

codewords 3 12 30 01 01 10
2 1 01 10 01

2 1 3 0, or 1 2 10 01 01
2 1 10 10 10

30 2 1 01 10 01
12 01 01 10

non-code
words

0 00 00 00 00 11
1 0 1, or 1 0 1 0, or 0 1 00 00 11
2 02 20 01 00 11

20 2 0, or 1 1 00 00
02 00 01

1 1 2 0, or 1 1 00 00
4 40 22 01 11 00

3 1, or 2 2 11 11
3 1 3 1. or 2 2 11 11
22 40 11 01

5 32 3 2. or 4 1 11 11 00
41 32 11 11

6 42 42 11 11 00-

Table 2. Code disjoint property of the TSC checker for 4/8 code.

4/8 checker inputs TRC inputs 4/8 checker outputs

ZjZ2 n "A, "B, "A,, "Bn

codewords 4 0 4, or 4 0 22 01 10 01

1 3, or 3 1 22 01 10 01

1 3, or 3 1 01 01 10

22 22 10 10 10

0 4, 4 0, 1 3, or 3 1 10 01 01

non-code
words

0 00 00 00 00 11

1 0 1, or 1 0 0 1, or 1 0 00 00 11

2 0 2, 2 0, or 1 1 0 2, 2 0, or 1 1 00 00 _, 11

3 0 3, or 3 0 1 2, or 2 1 01 00 11

1 2, or 2 1 1 2, or 2 1 00 00

0 3, or 3 0 00 01

5 1 4, or 4 1 2 3, or 3 2 01 11 00

2 3, or 3 2 2 3. or 3 2 11 11
1 4. or 4 1 11 01

6 2 4. or 4 2 2 4, 4 2, or 3 3 11 11 00

7 3 4, or 4 3 3 4, or 4 3 11 11 00

8 44 44 11 11 00

A B

x\ X2 *3*4 *5 x6 xj x% X9 X\Q

111 U I kkkk
3/6 2/4

| i—|

(Z1Z2)A.. .. (zxz2)B
2/4
IT
zl z2

Symbol:

1111111111
10-input blk

IT

(a)

m Ai Bi n
Am ^J"1 ^l ^2 *3*4 *5 x6 x7 xs X9 xi0 ^

1 M r-"

10-input blk

3 E—■» E—-9 f—* t- ■5 5—^ E-

BII

--(---*--•*--3 t-i t-H S--3 :

10-input blk

(Zl Z2)m
II

"if""!f"~tf"~t"T"t nrn
10-input blk

TRC (zl z2)l
uir

TRC

Ai A2
11

CZ1 z2)ll

TRC

rT
zl z2

BlB2

(b)

Fig.6 Totally Self-Checking checker for 5-out-of-10 code

B
*1 x2 *3 JT4 *5*6 *?*8 *9*10*11*12

linn linn
3/6 3/6

1 1
. i

^1^2JA 2/4 ^zlz2^B

zl
I
z2

Symbol:

iiiiiiiiiiii
12-input blk

n
(a)

m Ai Bi

Am Bin VW6*?***10*!!*" H
} S—3 t—i 5— -

•-•■--*-*-•*—*■•

12-input blk

. U-, — ■) t—) s-.j [

~i S~*-9 E—i E—SK—i:
 -a f—*—i S—

., „.) s—j f~^ s~

An Bn

12-input blk

y-f-f~f-$-j
(—«~i«~-9|S—if

12-input blk

(Zl Z2> III
IT
TRC H & z2)i in

i
TRC

Al A2
HI

(Zl Z2)ll

TRC
T~T~
zl z2

Bi B2

(b)

Fig. 7 Totally Self-Checking checker for 6-out-of-12 code

TOTALLY SELF-CHECKING FAULT-TOLERANT SYSTEM DESIGN

P.K.Lala and F. S. Vainstein
Dept. of Electrical Engineering

North Carolina A&T State University
Greensboro, NC 27411, USA.

Key Words: Triple Modular redundancy, Self-checking Circuits, Retry

Abstract

A scheme for designing fault tolerant systems
which are also totally self-checking for all single
faults, is presented in this paper. The system will
provide correct output in the presence of a single
faulty element and identify the element as well. The
scheme also allows distinction between a permanent
fault and a transient/intermittent fault.

1. Introduction

One of the established methods of designing
a reliable system from less reliable components is the
TMR(Triple Modular Redundancy) technique[l]. The
output of a TMR system is the majority of three
identical components. Thus, such a system can
tolerate errors in any one component. The major
drawback of the TMR system is that if two modules
fail or the voter has a fault which cannot be masked,
then the system produces erroneous outputs without
giving any indication of failure. Two approaches have
been proposed to overcome this problem[2,3]. Both
approaches incoporate error-checking circuits to
detect erroneous outputs. However, both approaches
suffer from the disadvantage that the additional
circuitry is not self-checking. Recently, another
approach has been proposed to implement totally self-
checking TMR fault-tolerant systems[4]. This
approach allows detection of both unmasked and
masked faults; however, no distinction is made
between a permanent and a transient/intermittent
fault. Moreover, the circuit overhead is high.

2. Fault tolerant implementation

We propose a new scheme for fault-tolerant
system design which also makes the system totally
self-checking; the concept of self-checking design has
been discussed in [5].In the proposed scheme, the

simplex(non-redundant) circuit is replaced by three
identical copies X,Y and Z, as shown in Fig.l. As in
the TMR system, all three copies receive the same
input. The output of each module is compared with
the outputs of the remaining two. The outputs of the
comparators are identified as a,b and c. If a=0, the
outputs of modules X and Y match, whereas a=l
indicates a mismatch between the outputs of the two
modules. Similarly, b and c indicate the compared
values of modules X/Z and Y/Z respectively. It would
be clear that if a module produces faulty output, the
outputs of two comparators will be at 1 i.e the outputs
of the comparators will form a 2-out-of-3 code. On
the other hand, if one comparator is faulty the values
of a,b and c will constitute a l-out-of-3 code. Table 1
shows how a faulty component can be identified from
the values of a,b, c. If one of the comparators is
faulty, the single module fault assumption is no longer
valid, hence no corrective action can be taken. Also,
if abc=lll, at least two modules are faulty, the
corrective action is not activated.

The function of the decision and correction logic
in Fig.l is to reconfigure the system so that the
system output is derived from a fault-free module. As
mentioned previously, depending on the outputs of the
comparators a, b and c, one module is selected to
provide the correct output. The decision logic consists
of an encoder, a totally self-checking checker and
circuitry for enabling the tri-state buffers. The
encoder accepts the outputs of the comparators and
converts them into a 2-out-of-4 code as shown in
Table 2. A totally self-checking 2-out-of-4 checker is
placed at the output of the encoder circuit to check the
validity of the codeword.

Finally, the output of the system is derived
by enabling one of the buffers as indicated in Table 1.
If a comparator is faulty, or two or more modules are
faulty i.e. lmnp = -00- or -11-, a flag is generated
and all the modules are disconnected from the output
bus, thus preventing the propagation of erroneous

information. If there is no fault, the output of the
enable circuit will form a l-out-of-4 code. A checker
circuit, which is totally self-checking for single and
unidirectional multiple errors, is placed at the output
of the enable circuit. The checker will produce a 1-
out-of-2 code if it receives a l-out-of-4 code, and if
there is no fault in the circuit itself. If the checker
produces 00 or 11 output, the system needs repair.

The function of the retry circuit (Fig.2) is to
distinguish between a permanent fault and a
transient/intermittent fault. It is assumed that the
duration of a transient fault is less than two clock
periods. Once a fault is detected i. e. abc * 000, it is
checked whether the fault is of transient or permanent
nature. This is accomplished by clocking in the values
of abc in a 3-bit register. If abc * 000, there is a
faulty component, the error signal will go to 1, and
the contents of the register will feed the AND gate
inputs via the multiplexers. If the next set of values of
abc is exactly the same as that stored in the register,
the corresponding fault is assumed to be of permanent
nature, whereas abc = 000 will indicate that the fault
is of transient/intermittent nature. If a fault is found to
be permanent, it can be diagnosed to a replaceable
component which is identified by the contents of the
3-bit register. For example, if module X has a
permanent fault, the contents of the register for two
consecutive pulses will be 110 (as indicated in Table
1). The retry circuit can be tested off-line for single
faults

3. Conclusion

A scheme for improving the reliabilty of digital
systems by incorporating fault tolerance and self-
checking concepts is presented in this paper. The
major advantage of this scheme is that it will not only
provide correct output in the presence of a single
faulty element, comparator or functional module, but
will identify the faulty element as well. In addition,
the scheme allows distinction between a permanent
and a transient fault in an element; The system is
implemented in a modular fashion, and each module
is protected by a self-checking checker. In the event
of a fault, the system will indicate its presence on-
line. If there is a fault combination whose effect
cannot be corrected, the output bus is disconnected
from the system, thus preventing the propagation of
erroneous information to other systems which may be
connected to the faulty system.

4. References

[1] J. Von Neumann " Probabilistic logics and the
syntheses of reliable organisms from unreliable

components". Automata Studies, Princeton Univ.
Press, 1958, pp.43-98.

[2] C.V.Ramamoorthy and Y.W.Han "Reliability
analysis of systems with concurrent detection"
IEEE Trans.Comput., vol.C-24, Sept. 1975,
pp.868-878.

[3] B.Courtois "On balancing safety and reliability
of hybrid and Brduplexed systems"Proc. FTCS-
6, 1976, pp.52-57.

[4] N. Gaitanis "The design of totally self-checking
TMR fault-tolerant systems" IEEE Trans.
Comput., vol.37, Nov.1988, pp.1450-1454.

[5] P.K.Lala Fault tolerant and Fault Testable
Hardware Design. Prentice Hall, 1985.

Acknowledgement: This work was supported in
part by the Office of Naval Research under
contract N00014-94-1-0462.

a b c Faulty Correct output
component source

0 0 0 none module X (or Y or Z)
0 0 1 comparator c none
0 0 1 comparator c none
0 1 0 comparator b none
0 1 1 module Z module Y (or X)
1 0 0 comparator a none
1 0 1 module Y module Z
1 1 0 module X module Z

a b c 1 m n p
0 0 0 0 0 11
0 1 1 110 0
1 0 1 0 10 1
1 1 0 10 10
1 1 1 10 0 1

Table 2 Encoding of 3-bit binary patterns
using 2-out-of-4 code

Table 1 Reconfiguration of faulty modules

p q r s Z, Z2

0 0 0 0 0 0
0 0 0 1 1 0
0 0 10 1 0
0 0 11 0 0
0 10 0 0 1
0 10 1 0 0
0 110 0 0
0 111 0 0
10 0 0 0 1
10 0 1 0 0
10 10 0 0
10 11 0 0
110 0 0 0
110 1 0 0
1110 0 0
1111 0 0

Table 3 l-out-of-4 to l-out-of-2 conversion.

X Y Z

Comparator Comparator Comparator

a b

Decision
&

Correction
Logic

.. ' Y

Output bus

Fig. 1 Fault tolerant system block diagram

» Error

Fig. 2. Retry Circuit

